PH5

Question			Marking details	Marks Available
3	(a)	(i)	Values substituted into $C=\frac{\varepsilon_{0} A}{d} \quad\left(=7.32 \times 10^{-9} \mathrm{~F}\right)(1)$ $Q=C V$ (or implied) note $C=\frac{Q}{V}$ not good enough (1) Answer $=9.37 \times 10^{-7}[\mathrm{C}](1)$	
		(ii)	Answer $=6.0 \times 10^{-5}[\mathrm{~J}]($ ecf $)$	1
		(iii)	$\begin{equation*} E=\frac{V}{d} \tag{1} \end{equation*}$	2
			Answer $=2170000\left[\mathrm{~V} \mathrm{~m}^{-1}\right](1)$	
	(b)	(i)	Capacitance decreases (1)	2
			Energy stored increases (1)	
		(ii)	Work done by separating plates or work done against field or increase in potential energy (1) (accept energy used instead of work done)	2
			Equal to increase in stored energy (1)	
			Question 3 Total	[10]

Question			Marking details	Marks Available
5	(a)		$\begin{align*} & F=E q \quad(\text { or } e E) \text { used or implied (1) } \\ & E=\frac{V}{d} \quad \text { quoted or implied (1) } \\ & a=\frac{F}{m} \text { used or implied (1) } \\ & a=\frac{11.2 \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31} \times 7.6 \times 10^{-3}}\left[=2.588 \times 10^{14}\right] \tag{1} \end{align*}$ N.B. Use of $a=\frac{E q}{m}$ or $F=\frac{V q}{d}$ award 2 marks or $a=\frac{V q}{m d}$ award 3 marks	4
	(b)	(i) (ii)	No horizontal forces (don't accept no horizontal acceleration or because it's in a vacuum) Constant vertical force or uniform electric field	1 1
	(c)		Valid method for obtaining time e.g. $s=u t+\frac{1}{2} a t^{2}(1)$ Time correct $=5.4 \times 10^{-9}[\mathrm{~s}](1)$ Answer $=8.00 \times 10^{7} \times 5.4 \mathrm{~ns}=43[\mathrm{~cm}]$ (ecf) (1) (factors of 10 or $\sqrt{10}$ slips only penalised 1 mark)	3
	(d)		Valid method e.g. definition of eV , force \times distance, getting resultant velocity and finding change in $\frac{1}{2} m v^{2}(1)$ Answer $=5.6[\mathrm{eV}]$ (which can simply be written for full marks) or $8.96 \times 10^{-19}[\mathrm{~J}]$ (ecf) (1) (answer of 11.2 eV gets $1 / 2$ marks)	2
				[11]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available

\hline \multirow[t]{10}{*}{6} \& \multirow[t]{3}{*}{(a)

(b)} \& \multirow[t]{10}{*}{| (i) |
| :--- |
| (ii) |} \& \[

$$
\begin{aligned}
& \text { Flux linkage }=N B A \cos \theta \text { used (1) } \\
& 0.251[\mathrm{~Wb}][\text { and } 0.251 \mathrm{~Wb}](1)
\end{aligned}
$$
\] \& 2

\hline \& \& \& No change in flux [linkage] or field lines cut in one direction and then the opposite direction Don't accept rate of change of flux is 0 \& 1

\hline \& \& \& Flux linkage $=0.0443$ or -0.0443 (1) \& 4

\hline \& \& \& $$
\text { Time }=\frac{20}{360} \times 0.1(1)
$$ \&

\hline \& \& \& Attempt at change of flux (linkage) divided by time (1) \&

\hline \& \& \& Answer $=[-] 15.9[\mathrm{~V}]$ (1) \&

\hline \& (c) \& \& Peak emf $=17$ [V] \& 3

\hline \& \& \& Sinusoid with peak of 3.4 squares high (ecf) (1) \&

\hline \& \& \& Sinusoid with period of 4 squares (1) \&

\hline \& \& \& Question 6 total \& [10]

\hline
\end{tabular}

Question		Marking details	Marks Available
7	(a)	Any 2 (x1) from:	
		- Near stars move relative to distant stars [due to Earth orbit]	2
		- More movement (or larger angle) means stars nearer (inversely proportional etc.) or accept parsec $=1 /$ arcsec	
		- Parallax (or distance) can be measured from readings 6 months apart (or accept readings where Earth movement is known etc.)	
		4 parsec or angle $=1.5 \times 10^{11} / \mathrm{d}(1)$	2
	(b)	$4 \times 3.25=13$ [light year] (1)	
	(c)	$10 \times$ distance gives 100 times less intensity (1)	3
		Substituting 1 and 0.1 into equation accept 1 and 10 (1)	
		$m=M-5$ and $m=M$ shown (1)	
		Alternative: 2.5^{5} roughly equal to 100 award 2 marks	
	(d)	1[\%] Accept 0.01 but not 0.01%	1
	(e)	Electrons need to be in the high energy levels (1)	3
		They need to be in $n=3$ ($1^{\text {st }}$ mark can be implied in the $2^{\text {nd }}$ mark) (1)	
		Not possible because no ultraviolet to absorb or collisions don't have enough KE (1)	
	(f)	Comparison with $4 \pi r^{2} \sigma T^{4}$ or $b=4 \pi \sigma$ (1)	3
		Answer $b=7.13 \times 10^{-7}(1)$	
		Unit $=\mathrm{W} \mathrm{m}^{-2} \mathrm{~K}^{-4}$ or equivalent (1)	

Question			Marking details	Marks Available
8	(a)	(i)	Sinusoidal reading on voltmeter @ 0.9 Hz (or across resistor) (1) Sinusoidal (or changing) B-field in primary (1) Leads to B-field cutting secondary or flux changing in secondary (1) emf induced in secondary due to Faraday's (1)	4
		(ii)	Lost flux or no iron core or low frequency or low turns	1
	(b)	(i)	$\omega L=\frac{1}{\omega C} \quad \text { or } f=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}}(1)$	2
			Answer $=4490[\mathrm{~Hz}]$ (1)	
		(ii)	$V_{R}=12[\mathrm{~V}](1)$	4
			$I=0.067$ [A] (1)	
			$V_{L}=\mathrm{I} \times \omega L \quad \text { or } \quad V_{C}=\mathrm{I} \times \frac{1}{\omega c}(1)$	
			$V_{L}=71.5[\mathrm{~V}]$ and $V_{C}=71.5[\mathrm{~V}]$ or implied e.g. $V_{C}=$ same (1)	
8	(c)	(i)	$Z=\sqrt{\left(X_{L}-X_{C}\right)^{2}+R^{2}}{ }_{(1)}$	3
			$Z=581[\Omega] \text { or implied (1) }$	
			$\text { Current }=\frac{12}{581}=21[\mathrm{~mA}](1)$	
		(ii)	Phasor diagram (1)	3
			$\tan \theta=\frac{X_{L}-X_{C}}{R}$ (this step implies vector diagram if omitted) (1)	
			$\begin{aligned} & \text { Answer }=72^{\circ}(\text { ecf })(1) \\ & \left(18^{\circ} \text { and similar slips gain } 1 / 2\right) \end{aligned}$	
	(d)		$\frac{R}{X_{C}}=\frac{3}{4}$	3
			$X_{C}{ }^{\text {c }}$ (1)	
			$X_{C}=\frac{1}{2 \pi f C} \text { or } X_{C}=\frac{1}{\omega C} \quad \text { and } \omega=2 \pi f \text { used (1) }$	
			$\text { Answer }=20[\mathrm{kHz}](1)$	
			Question 8 Total	[20]

Question			Marking details	Marks Available
9	(a)	(i)	Ørsted or Oersted (accept Orsted)	1
		(ii)	Battery (not cell)	1
		(iii)	Any 3 ($\times 1$) from:	3
			- Current passed through wire or pile connected across wire	
			- Compass turned [nearly] at right angles to wire	
			- When compass above wire points in opposite direction	
			- Compass points according to rh grip (or screw) rule	
			- Field lines circle around wire	
		(iv)	Electric effect arising from magnetism (or from magnet)	1
	(b)	(i)	Vortices shown separated by (smaller) idlers (1)	3
			Vortices and/or idlers labelled (1)	
			Rotation shown or stated (1)	
		(ii)	Any 2 ($\times 1$) from:	2
			- Maxwell used it to predict e-m waves	
			- Maxwell used it to explain magnetic field due to a wire	
			- Maxwell used it to explain [any other e-m effect!]	
			- Its existence is irrelevant / Maxwell didn't suppose it existed	

Question			Marking details	Marks Available
9	(c)	(i)	Produced when sparks occurred between [ball-ended] rods [connected to an induction coil or high voltage]. (1) Detected by sparks occurring across spark-gap between rods or across break in ring. (1)	2
		(ii)	He found spark intensity varied according to orientation of detector rods [relative to transmitter rods]. or he interposed metal grille between transmitter and detector, finding spark intensity varied with grille orientation.	1
		(iii)	He used metal reflector to produce stationary wave. (1) He measured distance between nodes [and doubled it]. (1)	2
	(d)	(i)	Time between events in a frame in which the events occur at the same place. or time between events as measured by a clock present at both events.	1
		(ii)	$\gamma=1.01$ $t_{\mathrm{B}}-t_{\mathrm{A}}=0.5000 \gamma$ (1) despite mistakes in γ $t_{\mathrm{B}}-t_{\mathrm{A}}=0.5050[\mathrm{~s}]$ (1) allow ecf on γ arising from slips.	3
			Question 9 total	[20]

Question			Marking details	Marks Available
10	(a)	Elastic, straight line (1) yield point (1) curve (1) Stress elastic limit (1)		6
	(b)	(i)	DE broken or E bonds with B (1) HG broken or H bonds with D (1) Movement of dislocations stated (1) Or all clearly seen from diagrams	3
		(ii)	No dislocations (or equivalent) or no grain boundaries Don't accept addition of foreign atoms Don't accept single crystal (stated in question)	1
		(iii)	Any valid use e.g. Turbine blades (don't accept wind turbines), combustion chambers, nuclear reactors, wear resistant materials, rocket engines etc.	1
	(c)	(i)	$\frac{F l}{2 \times 10^{11} A_{\text {steel }}}=\frac{F l}{1 \times 10^{11} A_{\text {brass }}}(1)$ Convincing algebra to show $A_{\text {brass }}=2 \times A_{\text {steel }}$ (1) (alternative: force, length and extension all the same 1 mark so brass must have twice the CSA 1 mark only - not fully shown as required)	2
		(ii)	50 [N]	1
		(iii)	$\begin{aligned} & \Delta x=\frac{50 \times 2}{\left(2.8 \times 10^{-7}\right) \times 2 \times 10^{11}} \quad(1)-\text { substitution }(\text { ecf on } 50 \mathrm{~N}) \\ & \Delta x=1.8[\mathrm{~mm}] \quad(1)(\text { correct unit required } \mathrm{m} \text { or } \mathrm{mm}) \end{aligned}$	2
		(iv)	$\begin{aligned} & E=1 / 2 F x(1)\left(\text { accept } \boldsymbol{E}=\frac{1}{2} \sigma \varepsilon \boldsymbol{V}\right) \\ & E=0.044[\mathrm{~J}](1)(\text { ecf on } \Delta x \text { only }) \end{aligned}$	2
		(v)	Same (1) F and Δx same (1)	2
				[20]

Question				Marking details	Marks Available 1
11	(a)	(i) (ii)		Both background and line spectra labelled clearly	
			I	[Inner] electrons [of target element] knocked out / ionised (1)	4
				Electrons from higher energy levels fall to take their place (1)	
			II	Rapid deceleration of electrons (1)	
				On collision with target element / nucleus (1)	
		(iii)		$\lambda=\frac{h c}{e V}$ (or rearrangement in figures) (1)	2
				$\lambda=2.07 \times 10^{-11}[\mathrm{~m}]$ (1) Accept $2.1 \times 10^{-11}[\mathrm{~m}]$	
	(b)	(i)		Ultrasound B-scan (1)	6
				Moving pictures/ see organ development not 'give a 2D image' (1)	
		(ii)		CT scan (1)	
				Distinguishes soft tissue well (1)	
				Accept MRI cannot be used because of pacemaker	
		(iii)		MRI scan (1)	
				Gives high quality images of soft tissue (1)	
	(c)			Time taken from scale $5 \pm 1[\mu \mathrm{~s}]$ (1)	3
				Distance $=8.2 \times 10^{-3}[\mathrm{~m}](1)($ (ecf)	
				$\text { Thickness }=\frac{8.2 \times 10^{-3}}{0}=4.1 \times 10^{-3}[\mathrm{~m}](1)$	

Question		Marking details	Marks Available	
11	(d)	(i)	QRS wave / R / central spike (1) Bigger / higher /more spiked (1) (ii) wave flatter / P wave extended/ prolonged PR interval / no P wave / smaller P wave / P wider / P lower amplitude Deepening of Q wave / T wave inversion / ST elevation / ST depression Irregular interval / inverted waves / bigger distance P to QRS to T wave $\}$ N.B. any incorrect statement negates the mark Question 11 total	1

Question			Marking details	Marks Available
12	(a)	(i)	Any $2 \times(1)$ from: - Possible second use as a bridge - Cheap electricity after build - Zero or low CO_{2} after built - High output - Predictable output - Sustainable/renewable/reliable energy source that will not run out	2
		(ii)	Any $2 \times(1)$ from: - Only available twice a day (i.e. not a constant output) - Possible huge impact on Severn estuary wildlife - High CO_{2} costs to build - Expensive to build ($£ 3 \mathrm{k}$ per kW as opposed to $£ 1 \mathrm{k}$ per kW coal)	2
	(b)		GPE (PE not good enough) to KE or GPE to electrical (1) $\mathrm{KE} /$ mechanical to electrical or const KE when running (1)	2
	(c)		Mean height increase $=0.5 h$ must be stated not implied (1) Either volume $=A h$ or mass $=A h \rho(1)$ Correct substitution into $m g h$ (ecf) (1)	3
	(d)		Values substituted into equation $\left(1.38 \times 10^{14} \mathrm{~J}\right)(1)$ $\times 2$ (or using time as 12 hrs) and $\times 0.75$ (1) Dividing by time or $P=E / t$ etc. (1) Answer $=2.4[\mathrm{GW}]($ no ecf) $)(1)$	4

